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Abstract

We present an adaptive coupled level-set/volume-of-fluid (ACLSVOF) method for interfacial flow simulations on
unstructured triangular grids. At each time step, we evolve both the level set function and the volume fraction. The level
set function is evolved by solving the level set advection equation using a discontinuous Galerkin finite element method.
The volume fraction advection is performed using a Lagrangian–Eulerian method. The interface is reconstructed based on
both the level set and the volume fraction information. In particular, the interface normal vector is calculated from the
level set function while the line constant is determined by enforcing mass conservation based on the volume fraction. Dif-
ferent from previous works, we have developed an analytic method for finding the line constant on triangular grids, which
makes interface reconstruction efficient and conserves volume of fluid exactly. The level set function is finally reinitialized
to the signed distance to the reconstructed interface. Since the level set function is continuous, the normal vector calcula-
tion is easy and accurate compared to a classic volume-of-fluid method, while tracking the volume fraction is essential for
enforcing mass conservation. The method is also coupled to a finite element based Stokes flow solver. The code validation
shows that our method is second order and mass is conserved very accurately. In addition, owing to the adaptive grid algo-
rithm we can resolve complex interface changes and interfaces of high curvature efficiently and accurately.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Flows involving two or more different fluids are very common in many natural and industrial processes, for
example, rain drops in the air, free surface flows in the ocean, the dispersion of two immiscible fluids into each
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other to create emulsions, polymer blending, and so on. Numerical simulations of such flows are difficult
because the interface separating different fluid phases must be accurately tracked or captured simultaneously
with the flow field evolution. Many methods have been developed for this purpose in the last two decades.
Typical methods are the marker particle (MP) method [1], the level set (LS) method [2–4], the volume-of-fluid
(VOF) method [5–7], the front tracking method [8,9], and the phase field method [10–14]. Each of these meth-
ods has its own advantages and disadvantages, and has been developed into various versions with steady
improvements. A detailed introduction and a comparison study of several variants of the MP method, the
LS method, and the VOF method were given by Rider and Kothe [15].

In an LS method, the interface is captured by a level set function /, which is zero on an interface, is positive
in one fluid and is negative in the other fluid. The interface is thus represented by the zero level sets. The level
set function is advected by the velocity u of the flow field as
/t þ u � r/ ¼ 0. ð1Þ
Usually, / is initialized as a signed distance from each grid point to the interface, and it is desirable to maintain
/ as a signed distance function as the interface evolves since, otherwise, high gradients or even a jump in / can
develop, for example, when interfaces merge. The high gradients in / could result in excessive errors when, for
example, derivatives of / are taken to find the interface normal vectors. In addition, maintaining / as a dis-
tance function is important for providing the interface a width fixed in time [16,17] because in numerical imple-
mentations the discontinuous surface delta function in the surface tension force term needs to be smoothed
over a finite, but small width to avoid numerical instability, and the measure of the width is based on the level
set function, which is assumed to be a signed distance function. However, when / is advected according to Eq.
(1), it does not remain a distance function in general. Therefore, a redistancing or reinitialization procedure is
needed to modify the advected level set function such that the modified level set function is a signed distance
function while the zero level sets remain the same before and after the redistancing, that is, the interface re-
mains unchanged during the redistancing. Notable previous works on redistancing have been done by Suss-
man and his coworkers [17,18]. Their previous paper [16] also provides a profound understanding of their
works. A review of the LS method with an emphasis on applications in fluid interfaces was given by Sethian
and Smereka [3]. See also Osher and Fedkiw [4]. The advantage of an LS method is that it handles merging
and breaking of the interface automatically, the interface never has to be explicitly reconstructed, and since /
is a smooth function, the unit normal n and curvature j of the interface can be easily calculated from / as
n ¼ r/
jr/j and j ¼ r � n. ð2Þ
A well-known drawback of the LS method is mass loss/gain, i.e., the mass (or volume for incompressible flow)
of the fluid is not conserved. For example, in a drop collision simulation the average mass error with the
method described in [18] is 0.5% and the error with the method described in [16] is 1.3%. Even though the zero
level sets of / can remain unchanged with some order of accuracy during the redistancing, the volume
enclosed by the zero level sets is not conserved as / evolves according to Eq. (1). An open problem is to find
more conservative schemes to solve (1) [18].

In the VOF method, a volume fraction function f is defined. The value of the volume fraction in each grid
cell is equal to the ratio of the volume of one of the fluids in this cell, called fluid 1, to the total volume of the
grid cell. Thus, f is unity in a cell that lies completely in fluid 1, and is zero if the cell lies completely in the other
fluid, called fluid 2. For cells that include an interface (called the interfacial cells), and thus contain both fluid 1
and fluid 2, f is between zero and unity. Inversely, given the volume fraction in each grid cell, one can recon-
struct an approximate interface, which is called ‘‘interface reconstruction’’. The f field is advected by the flow
field, that is
ft þ u � rf ¼ 0. ð3Þ
However, meaningful solution of Eq. (3) is not easy. Because f is a discontinuous function, using standard
numerical schemes such as an upwind finite difference method to solve Eq. (3) can easily diffuse the interface,
which should, however, remain sharp. One way to overcome this problem is to advect f based on a recon-
structed interface determined by the f field. Interface reconstruction is thus a key part of any VOF method,
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and has been improved from the original simple line (piecewise constant) interface reconstruction (SLIC) to
piecewise linear interface reconstruction (PLIC). A detailed review of some SLIC and PLIC interface recon-
struction methods from a historical perspective was given by Rider and Kothe [6]. Piecewise circle [19], piece-
wise parabolic [20,21], and piecewise spline [22] interface reconstructions have also been developed. Two new
interface reconstruction methods based on a least squares fit were presented by Scardovelli and Zaleski [23].
Based on the reconstructed interface, several schemes have been developed to advect f. Most of these works
are based on Eulerian advection of f on structured grids, either with a split scheme or an unsplit scheme. These
kind of schemes are described by Rider and Kothe [6]. However, the implementation of these schemes on tri-
angular unstructured grids is difficult. In particular, it is very complicated to compute the fluid volume fluxes
for triangular cells. A promising method is the Lagrangian–Eulerian advection method, which consists of
three typical stages: a Lagrangian projection, an interface reconstruction, and a remapping. This method is
independent of the grid type. It is suitable for both rectangular structured grids and triangular unstructured
grids. Typical works on this method are Shahbazi et al. [24] and Ashgriz et al. [25]. A new mixed split Eulerian
implicit—Lagrangian explicit advection scheme was presented by Scardovelli and Zaleski [23].

Compared to the LS method, a notable merit of the VOF method is that it can conserve mass very accu-
rately. A drawback of the VOF method is that it is hard to compute accurate interface normals and curvatures
because of the discontinuity in f. Several algorithms have been developed for normal vector calculations. How-
ever, most of them are less than second order accurate. A detailed comparison of several normal calculation
methods was given by Rider and Kothe [6]. Calculations of curvature are even more difficult because they
involve taking second order derivatives of f. Usually, the f field is smoothed by some kernel function when
used for curvature calculations. However, the optimum type and extent of the kernel operation may very well
depend on the interfacial flow being modeled [26]. A detailed comparison of several kernels and some princi-
ples on how to choose a kernel function were given by Williams et al. [27].

Recently, methods that couple two different schemes have been developed. Examples are the coupled level
set and volume-of-fluid method (CLSVOF) [28,29], the hybrid particle level set method [30], and the mixed
markers and volume-of-fluid method [31]. A coupled method takes advantage of the strengths of each of
the two methods, and is therefore superior to either method alone. In a CLSVOF method, both / and f

are evolved according to Eqs. (1) and (3), respectively. / is used to calculate the unit normal and curvature
of the interface. f, together with the unit normal calculated from /, is used to reconstruct a new interface.
Thus, / can finally be reset to a signed distance function based on the reconstructed interface. Volume can
be conserved very accurately by tracking f. Since / is continuous, the calculation of the interface normal
and curvature is natural, easy and accurate, in contrast to the normal and curvature calculation in a pure
VOF method, which requires unphysical smoothing of f. However, most of the previous works, including
the CLSVOF method by Sussman and Puckett [28], are for structured grids. A few works have been done
on unstructured grids [24,25,32,19]. Very recently, Sussman et al. [33,34] have developed a CLSVOF method
for an adaptive Cartesian grid.

The goal of the present paper is to present an adaptive coupled level set and volume-of-fluid (ACLSVOF)
volume tracking method for unstructured triangular grids. Using adaptive unstructured grids, we can cluster
the grid near the interface, enabling us to efficiently and accurately resolve complex changes in interface topol-
ogy, regions of high interface curvature, and the near contact regions between two impacting interfaces, which
is in general hard to achieve on structured grids. In our work, we use the adaptive mesh algorithm developed
in [35,36], which is based on the earlier work of Cristini et al. [37]. For the advection of the level set function,
we solve Eq. (1) using a discontinuous Galerkin finite element method. For the evolution of the volume frac-
tion, we use a Lagrangian–Eulerian advection scheme. Different from the works by Shahbazi et al. [24] and
Ashgriz et al. [25], our algorithm for volume fraction advection is built in the framework of our ACLSVOF
method, where the normal and the curvature of the interface will be calculated from the continuous level set
function. For interface reconstruction, different from the previous works, we have developed an analytic piece-
wise linear interface reconstruction for triangular grids [38]. The method is also coupled to a finite element
based Stokes solver. We use the Stokes solver for illustration. The method can be generalized to Navier–
Stokes and viscoelastic flows. Solid body translation, rotation, Zalesak disk rotation and a single vortex flow
problem are simulated to test our ACLSVOF volume tracking method. Drop deformation in an extensional
flow is simulated with the volume tracking method coupled to the Stokes solver.
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The rest of the paper is organized as follows. In Section 2 we describe the numerical methods for the level
set function evolution, the volume fraction evolution, grid adaption, and the Stokes flow solver. Code valida-
tion and results are presented in Section 3. A conclusion is given in Section 4.

2. Computational methods

2.1. The Eulerian evolution of the level set function

The evolution of the level set function is governed by Eq. (1). In practice, we reformulate Eq. (1) as
/t þr � ðu/Þ ¼ /r � u. ð4Þ

Theoretically, we have $ Æ u = 0 for incompressible flow. Numerically, however, this is not true in general. So,
the right hand side is retained in Eq. (4) such that the level set function is only convected by the velocity field
even when the numerical velocity field is not exactly divergence free.

Eq. (4) is solved using a Runge–Kutta discontinuous Galerkin finite element method (RKDG) [39,40]
on a fixed Eulerian grid (in contrast to the projected Lagrangian grid used in the next section). See also
[36]. Let P1(T) be the set of all polynomials of degree at most 1 on the triangular element T, and Th a
triangulation of the computational domain X with a characteristic grid size h. The finite element space is
defined as
W h ¼ fv 2 L2ðXÞ : vjT 2 P 1ðT Þ; 8T 2Thg. ð5Þ

Then, our numerical method is to find an approximate solution /h 2Wh, such that in each element T 2Th
Z

T

o/h

ot
v�

Z
T

/huh � rvþ
X
e2oT

Z
e

uh � n̂/̂hv� ¼
Z

T
r � u/hv; 8v 2 P 1ðT Þ; ð6Þ
where uh is the discrete velocity, v� denotes the value of a test function taken from within element T, /̂h is a
single-valued flux through an element boundary e, and n̂ is the outward unit normal of T. Note that uh is con-
tinuous across any element boundary (we employ a continuous velocity space; see Section 2.4.), but /h and the
test function v are discontinuous across an element boundary. Specifically, /̂h is defined as,
/̂h ¼
/�h if uh � n̂ P 0;

/þh if uh � n̂ < 0;

�
ð7Þ
where /�h is the value of /h on boundary e taken from within element T, and /þh is the value of /h on boundary
e taken from outside element T.

The time integration is performed using a second order Runge–Kutta scheme. For efficiency, the narrow
band/local level set strategy is utilized so that Eq. (6) is solved only in the neighborhood of the interface
(see also [36]).

Since the numerical level set function /h obtained from the above discontinuous Galerkin method is dis-
continuous, we project (in the L2 sense) the discontinuous /h onto a continuous piecewise linear space before
we use it to calculate the interface normal vector. Specifically, we define the continuous piecewise linear space
as
W �
h ¼ fv 2 C0ðXÞ \ L2ðXÞ : vjT 2 P 1ðT Þ; 8T 2Thg. ð8Þ
Let /�h denote the continuous level set function obtained by the projection. Then, the L2 projection of /h 2Wh

to /�h 2 W �
h is simply the solution of the following weak formulation:
Z

X
/�hv ¼

Z
X

/hv; 8v 2 W �
h. ð9Þ
In the framework of our ACLSVOF method, this continuous level set function will be used for interface nor-
mal calculations during interface reconstruction, and for convenience the superscript * will be omitted from
now on. At the end of each time step, the level set function will be reinitialized to a signed distance function
based on the reconstructed interface.
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2.2. The Lagrangian–Eulerian volume fraction evolution

For the volume fraction advection, we employ a Lagrangian–Eulerian advection scheme, which consists of
three stages: a Lagrangian projection stage, a reconstruction stage, and a remapping stage. Similar works can
be found in [24,25]. Fig. 1 shows a schematic of the method. During the Lagrangian projection stage, we treat
each grid cell as a material element. All fluid elements (or equivalently the grid cells) are advected/projected
using a Lagrangian approach. For example, in Fig. 1, by projecting fluid element ABC we get the correspond-
ing projected Lagrangian element A 0B 0C 0. Because the volume fraction is solely transported with the flow, the
volume fraction remains the same during the projection. Notice that for a linear velocity field triangles remain
triangles, no matter how they deform. All projected elements form a new grid, which we call the Lagrangian
grid. In contrast, the original grid is called the Eulerian grid.

As the shape of each element deforms, the interface position in each interfacial cell also changes. During the
reconstruction stage, we reconstruct the interface on the Lagrangian grid. The interface is approximated using
piecewise linear segments based on both the level set field and the volume fraction field. The reconstructed
interface concretely defines the configuration of each fluid phase on the Lagrangian mesh, as illustrated in
Fig. 1, where the two fluids in cell A 0B 0C 0 are separated by a reconstructed interface segment E 0F 0. A 0B 0E 0F 0

is full of fluid 1, and C 0E 0F 0 is full of fluid 2. Based on this information, we map each fluid element on the
Lagrangian mesh back to the original Eulerian mesh (or an adapted mesh when the grid is remeshed) during
the remapping stage, which gives us the advected volume fraction on the Eulerian grid and completes the vol-
ume fraction advection. Details of the method are as follows.

2.2.1. Lagrangian volume fraction projection

The projection of the volume fraction is equivalent to solving the volume fraction advection equation (3)
using a Lagrangian approach. Let us consider each grid cell a material element, and let f n

T be the volume frac-
tion in element T at time tn, then we have from Eq. (3) discretely that
~f nþ1
T ¼ f n

T ; 8T 2Th; ð10Þ

where ~f nþ1

T denotes the volume fraction in element T after a Lagrangian advection. Eq. (10) is equivalent to
saying that the volume fraction in each element is solely transported with the flow, which is consistent with the
differential Eq. (3).

In the meantime, each material element transports with the flow. So, we have that
dx

dt
¼ u; ð11Þ
A

B C
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E’

F’

∫udt

Fig. 1. Schematic of the Lagrangian–Eulerian volume fraction evolution.
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where x is the location of a material point on the boundary of an element. Numerically, if we assume that the
velocity is piecewise linear over every finite element, then finding the Lagrangian position of each element
T 2Th is equivalent to finding the Lagrangian position of each vertex of T. This can be achieved by solving
Eq. (11) at each vertex of the grid. These projected elements form a new projected grid that we call the
Lagrangian grid. Using a second order Runge–Kutta (RK) scheme, we can obtain the coordinates of each grid
node of the Lagrangian grid as the following
~x
nþ1

2
i ¼ xn

i þ
Dt
2

uðxn
i ; t

nÞ; for i ¼ 1; . . . ;MT ; ð12Þ

~xnþ1
i ¼ xn

i þ Dtuð~xnþ1=2
i ; tnþ1

2Þ; for i ¼ 1; . . . ;MT ; ð13Þ

where MT is the total number of grid nodes, and uð~xnþ1=2

i ; tnþ1
2Þ on the Lagrangian mesh has been interpolated

from the Eulerian mesh.
In the first step of the RK integration a triangular Eulerian grid cell is projected using the linear velocity

field in that cell, so it remains a triangle, although it may deform. To perform the second step of the RK inte-
gration, the velocity is updated on the Eulerian mesh, then interpolation is used to determine the velocity at
the vertices of the Lagrangian grid cells. It is assumed that these velocities define a linear velocity field in each
Lagrangian cell, so that in this second RK step we are again projecting a triangle with a linear velocity field, so
it remains a triangle. If the velocity field on the Eulerian mesh were used directly then cell edges would be pro-
jected with a velocity field that is only piecewise linear, so the projected cell edges would be piecewise linear.

Theoretically, the above Lagrangian projection conserves the volume of fluid in each element, because the
volume of each element does not change due to the incompressibility of the fluid. Numerically, however, the
volume of fluid can not be exactly conserved, because: (i) the numerical velocity field delivered from a flow
solver is in general not exactly divergence free; (ii) the numerical velocity field is approximated by piecewise
linear basis functions, and a triangular element remains a triangle during a projection only for linear velocities;
(iii) in the second RK step the velocity on the Lagrangian mesh is interpolated from the Eulerian mesh; and
(iv) the numerical integration of Eq. (11) is, of course, not exact. In other words, because of these four reasons,
the volume of a material element (or grid cell) is not exactly constant during the above numerical Lagrangian
projection, and thus, the volume of each single fluid phase may not be conserved exactly during the projection.

However, as we will show in Section 3, the volume loss/gain due to the last three reasons is extremely small.
The magnitude of the volume loss/gain due to velocity divergence depends on the quality of the flow solver. In
addition, we emphasize that the volume loss/gain can be significantly decreased by refining the grid. This will
be seen by comparing the mass error on grids of different resolutions (see results in Section 3).

2.2.2. Interface reconstruction

After the Lagrangian projection, we know the advected volume fractions in the Lagrangian cells. To map
the volume fraction from the Lagrangian mesh back to the Eulerian mesh, we need to know explicitly on the
Lagrangian grid where fluid 1 is and where fluid 2 is, or equivalently, where the interface is. In most previous
works, the interface in a cell is reconstructed as a line segment of the form n Æ x = a, where n is the unit normal
vector of the interface in this cell, x is the location of a point on the interface, and a is the line constant. In a
classic VOF method, n is calculated as the gradient of the volume fraction. Since volume fraction is discon-
tinuous across interfaces, most of these methods are less than second order accurate. Normal vector calcula-
tions based on least squares minimization are second order [6]. However, this method can be ‘‘prohibitively
expensive, especially in 3D’’ [6]. The parameter a is obtained by enforcing volume conservation, and is usually
calculated iteratively using a numerical method such as Brent’s method [6]. During each iterative step, the vol-
ume truncated by the line with the most recent estimate of a is calculated and compared to the given volume of
fluid in the cell. A final a is declared when the discrepancy between these two volumes is within some pre-
scribed tolerance.

In the present work, we use a different form to represent the linear interface, in which each linear interface
segment is denoted by its two end points. Thus, the interface reconstruction algorithm must find the coordi-
nates of the two end points for each interface segment. To do this, we first compute the normal vector n of the
interface in each interfacial cell. Then, the coordinates of the two end points of each interface segment are
finally determined by requiring that the normal vector of the interface is n and that the interface truncates
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the cell with the given volume fraction. Different from many previous works, we have developed an analytic
method, instead of an iterative method, for the second part (see also [38]). The method is analytic, efficient,
and conserves volume of fluid exactly. For brevity, the details of this method are given in Appendix A. In
the following, we describe in detail how we calculate the interface normal vector.

In the framework of our ACLSVOF method, interface normal vectors are calculated from the gradient of
the continuous level set function via Eq. (2). The level set function associated with the Lagrangian mesh is
obtained by interpolating the level set function associated with the Eulerian mesh onto the Lagrangian mesh.
To calculate the normal vector in a cell, we fit a quadratic function for / using a least squares method over a
stencil that consists of the vertices of the cell and of all the cells that share at least a vertex with the cell, as
shown in Fig. 2. To simplify the calculation, a local Cartesian coordinate system x 0 � y 0 is defined for each
normal calculation (see Fig. 2). The origin of the local coordinate system is located at the center of the cell
under consideration, at which the normal is located. The local coordinate axes x 0 and y 0 are parallel to the
global coordinate axes x and y, respectively. Let (xc,yc) be the global coordinates of the center of the cell.
Then, the local and global coordinates of a point are related to each other via x 0 = x � xc and y 0 = y � yc.

In each local coordinate system, the quadratic function for / has the generic form
Fig. 2.
system
/ ¼ ax02 þ bx0y 0 þ cy 02 þ dx0 þ ey 0 þ g; ð14Þ

where a, b, c, d, e, and g are coefficients to be determined using the least squares method, that is, a, b, c, d, e,
and g are the least squares solution of the over-constrained linear system
Qs ¼ r; ð15Þ

where
Q ¼

x0
2

1 x01y01 y0
2

1 x01 y 01 1

x0
2

2 x02y02 y0
2

2 x02 y 02 1

..

. ..
. ..

. ..
. ..
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.

x0
2

N x0N y0N y0
2

N x0N y0N 1

0
BBBBB@

1
CCCCCA; s ¼

a

b

c

d

e

g

0
BBBBBBBB@

1
CCCCCCCCA
; r ¼

/1

/2

..

.

/N

0
BBBB@

1
CCCCA;
ðx0i; y 0iÞ, i = 1, . . . ,N, are the local coordinates of the ith node in the stencil, N is the total number of nodes in the
stencil, and /i, i = 1, . . . ,N, is the level set value at the ith node. The least squares solution of this linear system
is s = (QtQ)�1Qtr, where the superscript t denotes matrix transpose and �1 denotes matrix inversion. Since
A’

C’B’

n

x

y

x’

y’

(xc,yc)

The stencil for calculating the interface normal vector in element A 0B0C 0. The normal vector and the origin of the local coordinate
x 0 � y 0 are located at the center of element A 0B 0C 0.
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QtQ is symmetric positive definite, it can be efficiently inverted using Cholesky decomposition. Once the coef-
ficients are known, the unit normal vector, which is located at the origin of the local coordinate system, is
simply
n ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ e2

p ;
effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ e2
p

 !
.

Once the normal vector is known the endpoints of the interface segment are computed analytically as de-
scribed in Appendix A.

2.2.3. Volume fraction remapping

By reconstructing the interface on the Lagrangian grid, we know exactly where fluid 1 is and where fluid
2 is. Then, the new advected volume fraction f nþ1

T on the original Eulerian grid (or an adapted grid when
the grid is adaptive) is obtained by mapping each projected Lagrangian fluid element back to the Eulerian
grid. More specifically, to find the new volume fraction in an Eulerian cell, we first find the volume of fluid
1 that overlaps or maps into this cell. This is achieved by performing polygon-polygon clippings, for which
fluid elements and grid cells are treated as polygons, and each Lagrangian fluid region that is occupied by
fluid 1 is clipped against each Eulerian grid cell. For example, as illustrated in Fig. 1, the two fluids in the
Lagrangian cell A 0B 0C 0 are separated by the interface segment E 0F 0. Fluid 1 occupies the entire volume
A 0B 0E 0F 0. By clipping A 0B 0E 0F 0 against cell ABC, we can find the portion of fluid 1 in A 0B 0E 0F 0 that maps
into the Eulerian cell ABC. Notice that the rest of fluid 1 in A 0B 0E 0F 0 is mapped into the adjacent cells of
ABC. The clipping algorithm (see Appendix B for details) renders the polygonal intersection between each
fluid region and each Eulerian grid cell. In particular, it returns the vertex coordinates, (xi,yi), i = 0, . . . ,m,
of the intersection polygon, where we assume that xm = x0 and ym = y0. The area of the polygon is com-
puted as [41]
S ¼ 1

2

Xm�1

i¼0

ðxiyiþ1 � xiþ1yiÞ
�����

�����. ð16Þ
The total volume of fluid 1 that maps into an Eulerian cell is the sum of the intersecting areas that the cell has
with all the Lagrangian regions that are occupied by fluid 1. The new volume fraction in an Eulerian cell is
then the total volume of fluid 1 that maps into this cell divided by the volume of the cell.

In practice, we only need to clip a grid cell against the fluid elements which are in the vicinity of the cell.
Because the interface only moves a finite distance of order h in each time step, only volume fractions in cells
near the interface change and need to be determined by remapping. Volume fractions in cells far away from
the interface are either 1 or 0 and they can be determined simply by inspecting the level set function without
remapping. These strategies can save computation time dramatically and are implemented easily for both fixed
and adaptive grids. Also note that since the projected fluid elements are connected consecutively without any
gap or overlaps between them, the new volume fraction on the Eulerian mesh must be between 0 and 1, and
the total volume of fluid is conserved exactly during remapping.

Polygon clipping is a very fundamental element in graphics. Various clipping algorithms, for example the
Sutherland–Hodgeman algorithm [42] and the Weiler–Atherton algorithm [43], have been designed. We use
the Sutherland–Hodgeman algorithm for its simplicity. The basic idea of this algorithm is described in Appen-
dix B for completeness.

2.3. The adaptive triangular mesh algorithm

To let grid refinement follow the interface motion, we adapt/rezone the grid at the end of each time step.
We use the adaptive remeshing algorithm developed in [35,36], which is an adaptation to flat domains of the
adaptive surface triangulated mesh of Cristini et al. [37]. The basic ideas of the method are described as fol-
lows. We refer readers to [35–37] for further details.

The key part of the algorithm is based on the minimization of the mesh configurational energy, which is
defined as
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E ¼ 1

2

X
edges

c2; ð17Þ
where the edge tensions are c = l � l0, l is the local edge length, and l0 is an optimal edge length. The optimal
edge length is determined from the relevant local length scale of a specific problem, for example, the distance
of a local point to the nearest interface, the radius of curvature, and the distance between two interfaces. The
mesh energy is an integral measure of how local edge lengths deviate from an optimal value. Minimization of
the mesh energy (17) implies that l � l0, i.e., the optimal mesh is achieved by the minimization of mesh energy.

By defining the mesh energy (17), the mesh is analogous to a system of springs. For a fixed mesh topology,
the minimization of the mesh energy (17) is thus equivalent to the relaxation of a dynamical system of massless
springs with tensions c and damping coefficients of unity. Accordingly, the position x of a node evolves with a
velocity _x proportional to the vector sum of spring forces acting on the node. Therefore,
_x ¼
XNc

j¼1

êjcj; ð18Þ
where Nc is the coordination number of the node, and êj is the unit vector parallel to edge j.
Node displacements reduce the mesh energy and lead to equilibrium of tensions at all nodes. However, due

to topological constraints the tensions themselves are in general nonzero. To further reduce the mesh energy, it
is necessary to perform topological mesh restructuring operations, which include node addition, subtraction,
and reconnection. Node addition/subtraction is needed when grids need to be refined/coarsened in some local
region. Node reconnection is used to reconnect some of the nodes such that the elements formed by these
nodes become more regular, or not extremely stretched. For specific details, see [35–37]. Topological restruc-
turing operations provide access to mesh configurations with lower energy than accessible by mesh relaxation.
The relaxation and topological restructuring are performed iteratively until j _xj is less than a prescribed value
and the criteria for node addition, subtraction and reconnection are no longer satisfied.

The resulting mesh maintains the resolution of the relevant local length scale everywhere with prescribed
accuracy. The minimization depends only on the instantaneous configuration of the interface, and is insensi-
tive to the deformation history.

2.4. The Stokes flow solver

To simulate a real problem, for example drop deformation in an extensional flow, we coupled our interface
capturing method with a finite element based Stokes flow solver. The governing equations for the flow solver
are
�r � ðlðruþ ðruÞtÞÞ þ rp ¼ r � F s; ð19Þ
r � u ¼ 0; ð20Þ
with Dirichlet (for prescribed boundary flows, e.g., shear and no-slip flows) and/or Neumann-type (free-slip)
boundary conditions (see [36]), where l is the dynamic viscosity of the local fluid, p is the pressure,
Fs = rdR(I � n � n) is the capillary pressure tensor, r is the surface tension coefficient, dR = d(/)j$/j is the
surface delta function, and I is the identity matrix. The local dynamic viscosity l is equal to l1 in fluid 1,
l2 in fluid 2. Notice that since we use the continuum surface stress formulation, the curvature of the interface
does not explicitly appear in Eq. (19).

The Stokes equations are solved using the Mini finite element method [44]. The finite element spaces are
V h ¼ fv 2 ðH 1ðXÞÞ2 : vjT 2 ðP 1ðT ÞÞ2; 8T 2Th; vjoXD
¼ 0; v � �njoXN

¼ 0g
� fv : vjT 2 ðP 3ðT ÞÞ2 \ ðH 1

0ðT ÞÞ
2
; 8T 2Thg; ð21Þ

Qh ¼ q 2 C0ðXÞ \ L2ðXÞ : qjT 2 P 1ðT Þ; 8T 2Th;

Z
X

q ¼ 0

� �
ð22Þ
for velocity and pressure, respectively, where oXD denotes Dirichlet boundary, oXN denotes Neumann-type
boundary, and �n is the normal to oXN.
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Multiplying Eq. (19) by vh 2 Vh and Eq. (20) by qh 2 Qh, we get the weak formulation for the unknowns
(uh,ph) 2 Vh · Qh:
Z

X
lðruh þ ðruhÞtÞ : rvh �

Z
X

phr � vh ¼ �
Z

X
F s : rvh; ð23ÞZ

X
qhr � uh ¼ 0 ð24Þ
for all test functions (vh,qh) 2 Vh · Qh. See [36] for a derivation.
To evaluate the surface stress in the above weak formulation, the normal vector n at a cell vertex is calcu-

lated from the continuous level set function using a least squares fit similar to that described in Section 2.2.2.
The only differences are that the origin of the local coordinate system is located at the cell vertex, and the
fitting is over a stencil that consists of the vertex under consideration and all its nearest neighbors. In addition,
as is in [36], in practice the Dirac delta function d(/) is replaced by a smoothed version d�(/), where d�(/) =
dH�/d/ and H� is a smoothed Heaviside function, defined as
H �ð/Þ ¼
0 if / < ��;
1
2

1þ /
�
þ 1

p sin p/
�

� �� �
if j/j 6 �;

1 if / > �;

8><
>: ð25Þ
where the parameter � is taken to be 2–4 times the smallest mesh size. The local dynamic viscosity l is also
smoothed using the smoothed Heaviside function. Thus,
l ¼ l1 þ ðl2 � l1ÞH �ð/Þ. ð26Þ

The resulting linear system from the discretization is solved using an inexact Uzawa method [45]. Matrix inver-
sions are performed using SSOR preconditioned conjugate gradient method. See also [36].
2.5. Summary

The whole procedure is summarized as follows:

(1) At the beginning of a computation, the initial values of /, and f are specified according to the initial
interface position. Then, the flow field, i.e. the velocity and pressure, are initialized by solving the Stokes
equations. Notice that since the Stokes equations are time independent, they can be solved as a quasi-
steady problem at any time instance.

(2) Knowing the initial values of /, f and u, or the values of /, f and u at time level n, we perform (i) the first
step of the two-stage RKDG Eulerian level set evolution to obtain the intermediate Eulerian level set
function, /n+1/2, on the Eulerian grid; and (ii) the first step of the two-stage Runge–Kutta projection
of the grid, in which grid nodes are projected according to Eq. (12). The projection results in an inter-
mediate Lagrangian mesh. The position of a node in the intermediate Lagrangian mesh is given by
~x

nþ1=2
i .

(3) The intermediate Eulerian velocity uðxn
i ; t

nþ1
2Þ is obtained by solving the Stokes equations on the Eulerian

mesh, for which the interface normal vector in the surface stress term is calculated from the intermediate
level set function /n+1/2. The intermediate Lagrangian velocity uð~xnþ1=2

i ; tnþ1
2Þ is obtained from the inter-

mediate Eulerian velocity uðxn
i ; t

nþ1
2Þ through interpolation.

(4) Then, the second step of the RKDG level set evolution is performed to solve for /n+1, the Eulerian level
set function at time level n + 1, and the second step of the Runge–Kutta grid projection is performed to
obtain the final Lagrangian mesh corresponding to time level n + 1, in which grid nodes are projected
according to Eq. (13).

(5) The volume fractions remain the same during the projection according to Eq. (10). The level set function
on the final Lagrangian grid is obtained from /n+1 through interpolation. Based on both the level set
function and volume fraction, we reconstruct an interface on the final Lagrangian grid, as described
in Section 2.2.2.
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(6) To let grid refinement follow the interface motion, grid is adapted/rezoned based on the current interface
position, which results in a new Eulerian grid.

(7) The values of f on the new Eulerian grid are obtained through remapping, as described in Section 2.2.3.
The level set function on the new Eulerian grid is directly obtained as the signed distance function to the
previously reconstructed interface on the Lagrangian grid. The distance function is calculated as the min-
imum distance of a point to the linear segments that constitute the interface. The flow velocity on the
new Eulerian grid is obtained by solving the Stokes equations.

(8) Steps 2–7 are repeated until a specified end time is reached.

3. Results

In this section, we examine the integrity and accuracy of our ACLSVOF interface reconstruction and vol-
ume tracking method, and present numerical simulations of drop deformation in an extensional flow using our
adaptive ACLSVOF method, for which the flow velocity is solved using the Stokes flow solver described in
Section 2.4.

3.1. Interface reconstruction test

3.1.1. Reconstruction of a linear interface
For a linear interface defined by n Æ x = a, the analytic level set function is given by / = n Æ x � a, which is a

linear function of the coordinates of a point. Because the least squares quadratic fitting approximates a linear
function exactly, our normal calculation method, described in Section 2.2.2, computes the normal vector of a
linear interface exactly. In addition, because the linear interface segments are finally reconstructed analytically
using the analytic reconstruction method, described in Appendix A, our interface reconstruction method
reconstructs a linear interface exactly. This implies that our interface reconstruction method is second order
accurate [46].

3.1.2. Reconstruction of a circular interface

A circle of radius 0.368 centered at (0.525,0.464) in a (0,1) · (0, 1) computational domain is reconstructed
using the CLSVOF interface reconstruction method described in Section 2.2.2. The discrete volume fraction
data are initialized exactly as the volume ratio of each cell occupied by the interior fluid. The level set at each
node point is initialized exactly as the signed minimum distance of the node to the circle.

Fig. 3 shows the reconstructed interface on a 2 · 102 uniform triangular grid, which is obtained from a 102

uniform rectangular grid by dividing each rectangular cell into two triangular cells along one of its diagonals.
The difference between the reconstructed interface and the analytic interface is nearly invisible.

To quantify the reconstruction error, an L1 error norm is defined. Since a reconstructed interface segment
does not exactly coincide with the analytic interface, there is a volume mismatch between the analytic interface
and the reconstructed interface, as illustrated in Fig. 4. The L1 error norm is defined as the summation of the
volume mismatches in all interfacial cells, and is computed analytically. Table 1 shows the reconstruction
errors and convergence rates on five uniform triangular grids. The results verify that our interface reconstruc-
tion method is second order accurate.

3.2. Volume tracking tests

Uniform translation and solid body rotation tests have been used widely for assessing the integrity and capa-
bility of an interface tracking method [6]. As stated in [6], ‘‘an acceptable volume tracking method must trans-
late and rotate fluid bodies without significant distortion or degradation of fluid interfaces. Mass should also be
converged rigorously in these cases’’. However, simple translation and rotation tests provide only a minimal
assessment of the capability of a volume tracking method since the interface does not deform. Interfacial flows,
for example the Rayleigh–Taylor, Richtmeyer–Meshkov, and Kelvin–Helmholtz instabilities, often involve
strong vortical flows near the interface, and thus complex changes of the interface. ‘‘A complete assessment



Fig. 4. Volume mismatch (shaded area) between the analytic circle and the reconstructed linear interface in a triangular cell.

Table 1
L1 error norms, and convergence rates for circle reconstruction

Triangles L1 error Order

2 · 102 1.47E�3 –
2 · 202 3.17E�4 2.21
2 · 402 8.67E�5 1.87
2 · 802 1.94E�5 2.16
2 · 1602 5.26E�6 1.88
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Fig. 3. Reconstructed interface on a 2 · 102 uniform triangular grid. The difference between the reconstructed interface and the analytic
interface, which is plotted using a dotted line, is nearly invisible.
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of interface tracking methods should therefore impose strong vorticity at the interface’’ [15]. We refer readers to
the articles by Rider and Kothe [6,15] for an elegant discussion of choosing appropriate test problems.

In this section, we present results for four selected test problems: simple translation, and rotation of a cir-
cular fluid body, solid body rotation of Zalesak’s slotted disk [47], and the single vortex problem introduced
by Rider and Kothe [15], where the single vortex problem provides a rigorous test of a volume tracking
method in cases where significant interface stretching occurs. These test problems have been widely used
recently [6,23,24,30,48].

For the solid body rotation of Zalesak’s slotted disk, the geometry and grid were chosen to allow comparison
to data in the literature and are described below in Section 3.2.3. For all other tests, we perform convergence
studies, for which an L1 error norm is defined as



376 X. Yang et al. / Journal of Computational Physics 217 (2006) 364–394
EL1 ¼
Z

X
jf computedðx; tÞ � f exactðx; tÞjdx. ð27Þ
Convergence studies are performed on both fixed uniform grids and adaptive clustered grids. The fixed uni-
form grids are obtained from the corresponding uniform structured rectangular grids, with edge lengths of
0.032, 0.016, and 0.008, respectively, by dividing each rectangular cell into two triangular cells. For all adap-
tive grids, grids are clustered near the interface to render high resolution near the interface. The edge lengths of
the smallest grid cells, denoted by hmin, are roughly 0.032, 0.016, and 0.008, respectively for the three sets of
adaptive grids. We expect the errors on the adaptive grids to be about the same size as on the corresponding
uniform grids, because only the grid in the vicinity of the interface should affect the accuracy of the evolution
of the interface position, but many fewer grid cells are used on the adaptive grids than on corresponding uni-
form grids. The CFL number for these tests is 0.7. The computational domain is a (0, 1) · (0, 1) square.

To quantify the accuracy of mass conservation of the method, we define a time averaged mass error as
EM ¼
Z T f

t¼0

jMðtÞ �Mð0Þj
T f

dt; ð28Þ
where
MðtÞ ¼
Z

X
f ðx; tÞdx ð29Þ
and Tf is the total integration time. As the velocity fields are given analytically for these tests, volume changes
in these tests are primarily due to reasons (ii), (iii) and (iv), as elaborated in Section 2.2.1.

3.2.1. Simple translation of a circular fluid body

An initially circular fluid body of radius 0.25 centered in the computational domain is translated by a uni-
form velocity field along the 45� domain diagonal. The velocity remains constant with unit components, but
changes sign at times 0.25 and 0.75, respectively. Therefore, the fluid body should return to its initial position
after 1 time unit without any interface deformation.

Fig. 5 shows the final reconstructed interfaces and the corresponding L1 error contours on the three sets of
adaptive grids. The reconstructed interface and error contours are isotropic with respect to flow, exhibiting no
bias towards the flow direction. The total number of triangles is subject to change as the grid adapts to the
evolving interface. At t = 0, the total numbers of triangles in the computational domain are 764, 1722, and
3590, respectively, which are much less than the number of triangles of the corresponding uniform grids, espe-
cially as the minimum grid sizes become smaller (see Table 2).

Table 2 shows that our volume tracking method translates a fluid body with second order accuracy on both
uniform grids and adaptive clustered grids. In addition, as we have expected, the L1 errors on the adaptive
grids are very close to those on the corresponding uniform grids because they have similar minimum grid sizes,
while using significantly fewer grid cells. It is also shown that the mass errors are zero on each of the grids,
verifying that our method conserves mass exactly for simple translation problems because the second order
Runge–Kutta method integrates a constant function exactly.
3.2.2. Solid body rotation of a circular fluid body

An initially circular fluid body of radius 0.15 centered at the point (0.5,0.75) is revolved around the center
of the unit domain with a constant unit angular velocity for one complete revolution. Therefore, the fluid body
should return to its initial position after 2p time units without any change in the interface shape.

Fig. 6 shows the final reconstructed interface and the corresponding L1 error contours on the three sets of
adaptive grids. Table 3 shows second order convergence in the L1 error norms for both uniform grids and
adaptive grids. Again, the L1 errors on the adaptive grids are very close to those on the corresponding uniform
grids having similar minimum grid sizes, while the number of triangles are greatly reduced by using adaptive
grids. The time averaged mass errors are not zero because the projection of a fluid element subject to rotation
can not be integrated exactly. However, the mass errors are very small compared to the total mass of the drop,
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Fig. 5. Reconstructed interfaces (left) and the corresponding L1 error contours (right) of an initially circular fluid body after a complete
diagonal translation. hmin � 0.032, 0.016, and 0.008, respectively from top to the bottom. The contours are of 20 levels from �3.1 · 10�6 to
2.7 · 10�6 for (b), from �4.0 · 10�7 to 2.9 · 10�7 for (d), and from �9.2 · 10�8 to 7.2 · 10�8 for (f).
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Table 2
L1 error norms, convergence rates and time averaged mass errors for the simple translation test

hmin Triangles L1 error Order Mass error

Fixed uniform grids

0.032 2048 7.10E�5 – 0.0
0.016 8192 1.67E�5 2.09 0.0
0.008 32768 3.61E�6 2.21 0.0

Adaptive grids

0.032 764 9.14E�5 – 0.0
0.016 1722 1.80E�5 2.34 0.0
0.008 3590 5.07E�6 1.83 0.0
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and because they are much lower than the L1 error norms, the mass errors do not nullify our convergence
study. In addition, it is seen that the mass errors are significantly reduced by refining the grid.

3.2.3. Zalesak slotted disk rotation

Zalesak slotted disk [47] (refer to Fig. 7) is revolved about the center of the computational domain with a
constant angular velocity. To compare our results with other’s, we consider Rudman’s version [49] of this
problem, in which the specifications of the geometry are slightly modified from [47]. In particular, the com-
putational domain is a (0, 4) · (0,4) square. The circle is centered at (2,2.75), with a diameter of 1. The width
of the slot is 0.12. The maximum width of the upper bridge, that connects the left and right portions of the
circle, is 0.4. The constant angular velocity is 0.5. Thus, the disk should return to its initial position after
4p time units without any interface change.

In most previous works, uniform rectangular grids, with 200 cells along each coordinate direction, were
used. To compare our results to these previous works, we present test results on both a fixed uniform trian-
gular grid and adaptive triangular grids. The uniform triangular grid is obtained from the uniform rectangular
grid, with 200 cells along each coordinate direction, by dividing each rectangular cell into two triangles along
one of its diagonals. For adaptive grids, we refine the grid near the interface such that the edge length of the
smallest cells is roughly 0.02. In addition, as in [49] the time step is chosen such that a complete revolution is
completed in 2524 time steps, corresponding to a Courant number of about 0.25, and the errors for this test
are computed as
EZ ¼
P

T jf
computed
T � f exact

T jP
T f exact

T

. ð30Þ
Fig. 7(a) shows the reconstructed slotted disk after one complete revolution on an adaptive grid. The difference
between the reconstructed disk and the exact solution is only visible in the small regions near the sharp cor-
ners, where the sharp corners are smoothed due to the linear reconstruction of the interface. This is consistent
with those results presented by other researchers, for example in [49,48,23]. However, our result looks more
symmetric than most other similar results, and is comparable with the results obtained using quadratic inter-
face reconstruction methods in [23] (refer to Fig. 8 in [23] for a comparison). This is more evident when look-
ing at the results after 10 complete revolutions, shown in Fig. 7(b) (refer to Fig. 9 in [23] for a comparison). It
is seen that even after 10 complete revolutions most of the reconstructed interface still coincides with the exact
solution. There is only mild overshooting at the corners. The adaptive grid for this computation is shown in
Fig. 7(c), which only uses about 5500 grid cells, compared to 2 · 200 · 200 grid cells on the uniform grid.
Fig. 7(d) shows the reconstructed slotted disk after 10 complete revolutions on a refined adaptive grid, the
minimum grid size of which is

ffiffiffi
2
p

times smaller than that of the previous grid. We see that refining the grid
does improve the accuracy.

The EZ errors after one complete revolution are tabulated in Table 4, and are compared with the errors
presented by other researchers. It is seen that the error on the fixed uniform triangular grid is smaller than
most of the other errors, and is only bigger than the errors of Scardovelli and Zaleski obtained using a
quadratic fit. The error on adaptive grid is slightly larger than the error on the uniform triangular grid. This
difference is mainly because the control of the smallest grid size of the adaptive grid is only approximate, i.e.,
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Fig. 6. Reconstructed interfaces (left) and the corresponding L1 error contours (right) of an initially circular fluid body after a complete
revolution. hmin � 0.032, 0.016, and 0.008, respectively from top to the bottom. The contours are of 20 levels from �1.9 · 10�5 to
1.9 · 10�5 for (b), from �2.6 · 10�6 to 2.1 · 10�6 for (d), and from �3.0 · 10�7 to 4.0 · 10�7 for (f).
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Table 3
L1 error norms, convergence rates and time averaged mass errors for the solid body rotation test

hmin Triangles L1 error Order Mass error

Fixed uniform grids

0.032 2048 5.61E�4 – 2.59E�7
0.016 8192 1.28E�4 2.13 3.75E�8
0.008 32768 3.48E�5 1.88 4.57E�9

Adaptive grids

0.032 523 4.09E�4 – 1.20E�6
0.016 1107 1.01E�4 2.02 2.45E�7
0.008 2246 2.54E�5 1.99 2.16E�8
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Fig. 7. Zalesak slotted disk test. (a) The reconstructed disk (solid line) and the exact solution (dotted line) after one complete revolution.
hmin�0.02. (b) The reconstructed disk (solid line) and the exact solution (dotted line) after 10 complete revolutions.hmin�0.02. (c) The

reconstructed disk and the computational grid after 10 complete revolutions.hmin

� 0.02. (d) The reconstructed disk (solid line) and theexact solution (dotted line) after 10 complete revolutions.hmin

� 0.014.
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Table 4
EZ errors for Zalesak slotted disk test after one complete revolution

Advection/reconstruction methods EZ error

SLIC 8.38E�2
Hirt–Nichols 9.62E�2
FCT–VOF 3.29E�2
Youngs 1.09E�2
Harvie and Fletcher (Stream/Youngs) 1.07E�2
Harvie and Fletcher (Stream/Puckett) 1.00E�2
López et al. (EMFPA-SIR) 8.74E�3
present ACLSVOF (uniform triangular grid) 7.19E�3
present ACLSVOF (adaptive triangular grid) 1.25E�2
Scardovelli and Zaleski (linear least-square fit) 9.42E�3
Scardovelli and Zaleski (quadratic fit) 5.47E�3
Scardovelli and Zaleski (quadratic fit + continuity) 4.16E�3

All previous results are taken from Table 3 in [48].
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the smallest grid cells vary slightly in size spatially and temporally. The time averaged mass errors for this test
are on the order of 10�9, which is extremely small.

3.2.4. Single vortex flow

An initially circular fluid body of radius 0.15 centered at the point (0.5,0.75) is evolved by a single vortex
flow field. The flow field is given by the stream function
W ¼ 1

p
sin2ðpxÞ sin2ðpyÞ; ð31Þ
where the velocity vector is defined by (�oW/oy,oW/ox). This flow field was first introduced by Bell et al. in
[50], and first used as the flow field in the ‘‘single vortex’’ problem for assessing the integrity and capability of
an interface tracking method by Rider and Kothe in [15]. The flow field contains a single vortex centered in the
domain. The vortex spins fluid elements, stretching them into a thin filament that spirals toward the vortex
center. Thus each fluid element can undergo very large deformation.

Fig. 8 shows the evolution of the circular fluid body in the single vortex flow field. The solution is computed
using an adaptive mesh of moderate resolution, for which the smallest grid cell has an edge length of 0.016. It
is seen that the fluid body is spun into a thinning filament, which compares very well with those results
obtained using other state-of-the-art methods, for example [6,24]. Theoretically, the filament spirals toward
the vortex center, and becomes thinner and thinner continuously. However, Fig. 8 shows that the thin filament
breaks into small pieces beginning at its tail after long time evolution. This is because the grid resolution has
become low relative to the thinning filament when the thickness of the filament is equal to or less than the grid
size. Because the interface is represented by a single line segment in each interfacial grid cell, any two interfaces
merge automatically whenever they come into the same cell, resulting in an unphysical ‘pinch-off’. Once the
pinch-off occurs, the linear segment approximation of an interface immediately flattens the high curvature
region, effectively applying numerical surface tension. Because the filament asymptotes to infinitesimal thick-
ness, any grid will eventually provide inadequate resolution. However, this unphysical pinch-off can be delayed
by refining the grid near the interface. Because we have implemented adaptive unstructured grids in our algo-
rithm, we can refine the grid near the interface efficiently.

For convergence studies, the Leveque cosine term [51] is applied to the velocity field, i.e., the flow field
defined by (31) is multiplied by cos(pt/Tf). By doing this, the flow field reverses in time such that any fluid body
returns to its initial position at time Tf, allowing the error to be quantified with Eq. (27). Convergence studies
are performed for three different values of Tf on both fixed uniform grids and adaptive grids. Fig. 9 shows the
reconstructed interfaces and the corresponding L1 error contours on the adaptive grid of hmin � 0.016 for the
three values of Tf. Quantitative error measurements and convergence rates are shown in Table 5. The conver-
gence rates show that our ACLSVOF method is second order accurate, even when Tf is large, for which large
complex topological change has occurred (see Fig. 10), indicating that our method is remarkably resilient for
interface capturing. Once again, we see that the errors on the adaptive grids are similar to those on fixed



0 1
0

1
t=0.75

x

y

0 1
0

1

t=7 50

xy

0101t=2725xy0101t=3 00xy01011
uniform grids. Because the initial fluid body is the same as that in the solid body rotation test in Section 3.2.2,
the grids at the start of the computations are the same as those in the solid body rotation test. The mass errors
are very small relative to the L1 error norms, and thus do not nullify our convergence study.
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Fig. 9. Reconstructed interfaces (left) and the corresponding L1 error contours (right) for an initially circular fluid body placed in a time-
reversed, single vortex flow on an adaptive grid of hmin � 0.016 at t = Tf, where Tf = 0.5, 2.0 and 8.0, respectively from top to the bottom.
The contours are of 20 levels from �5.9 · 10�7 to 6.9 · 10�7 for (b), from �2.0 · 10�5 to 1.3 · 10�5 for (d), and from �9.2 · 10�5 to
8.8 · 10�5 for (f).
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Table 5
L1 error norms, convergence rates and time averaged mass errors for the time-reversed, single vortex test

Tf hmin Fixed uniform grids Adaptive grids

L1 error order Mass error L1 error order Mass error

0.5 0.032 1.26E�4 – 7.64E�6 1.97E�4 – 1.86E�5
0.016 2.41E�5 2.39 3.17E�6 2.58E�5 2.93 3.01E�6
0.008 4.30E�6 2.49 3.09E�7 5.24E�6 2.30 2.76E�7

2.0 0.032 1.41E�3 – 2.53E�5 1.62E�3 – 3.40E�5
0.016 3.38E�4 2.06 5.25E�6 3.36E�4 2.27 6.45E�6
0.008 6.84E�5 2.30 4.86E�7 7.95E�5 2.08 3.79E�7

8.0 0.032 3.70E�2 – 7.01E�5 3.54E�2 – 7.57E�5
0.016 3.75E�3 3.30 7.66E�6 3.56E�3 3.31 1.41E�5
0.008 5.61E�4 2.74 1.45E�6 5.09E�4 2.81 1.30E�6
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In Tables 6 and 7, we compare our results with those presented by other researchers. We point out that all
the results presented by other researchers were obtained using uniform structured rectangular grids. Our
results were obtained on both fixed uniform triangular grids and adaptive triangular grids. For comparison,
the minimum grid sizes of our grids were controlled to be similar to the grid sizes of the corresponding rect-
angular grids. Table 6 shows the L1 error norms, and convergence rates obtained using different methods for
Tf = 2.0. It is seen that all of the methods are about second order accurate, and the error levels of the methods
are fairly close to each other. Table 7 shows the L1 error norms obtained using different methods for Tf = 8.0.
All previous results were obtained on a 128 · 128 rectangular grid. Results of the present paper were obtained
on a fixed uniform grid and an adaptive grid (both with hmin � 0.008), respectively. It is seen that the errors of
our method are among the lowest ones, except that of Aulisa et al. [52] obtained using a marker and local area
conservation method, which is much lower than all of the other errors.

3.3. Simulation of drop deformation in an extensional flow

In this section, we simulate a physical problem by coupling our adaptive CLSVOF interface capturing
method with a Stokes flow solver, that is, the interface will be captured using our adaptive CLSVOF methods



Table 6
L1 error norms, and convergence rates obtained using different methods for the time-reversed, single vortex test with Tf = 2.0

Computational methods Grid size L1 error Order

Garrioch and Baliga (Pilliod–Puckett advection circle fit) 32 · 32 2.23E�3 –
64 · 64 4.93E�4 2.18
128 · 128 1.12E�4 2.14

Scardovelli and Zaleski (linear fit) 32 · 32 1.75E�3 –
64 · 64 4.66E�4 1.91
128 · 128 1.02E�4 2.19

Scardovelli and Zaleski (quadratic fit) 32 · 32 1.88E�3 –
64 · 64 4.42E�4 2.08
128 · 128 9.36E�5 2.24

Scardovelli and Zaleski (quadratic fit + continuity) 32 · 32 1.09E�3 –
64 · 64 2.80E�4 1.96
128 · 128 5.72E�5 2.29

Aulisa et al. (markers/VOF) 32 · 32 1.00E�3 –
64 · 64 2.69E�4 1.89
128 · 128 5.47E�5 2.30

López et al. (EMFPA-SIR) 32 · 32 8.62E�4 –
64 · 64 2.37E�4 1.86
128 · 128 5.62E�5 2.08

Present (fixed uniform grids) hmin = 0.032 1.41E�3 –
hmin = 0.016 3.38E�4 2.06
hmin = 0.008 6.84E�5 2.30

Present (adaptive grids) hmin � 0.032 1.62E�3 –
hmin � 0.016 3.36E�4 2.27
hmin � 0.008 7.95E�5 2.08

All previous results are taken from Table 5 in [48].

Table 7
L1 error norms obtained using different methods for the time-reversed, single vortex test with Tf = 8.0

Advection/reconstruction methods L1 error

Rider and Kothe/Puckett 1.44E�3
Harvie and Fletcher/Youngs 2.16E�3
Harvie and Fletcher/Puckett 1.18E�3
EMFPA/Youngs 2.13E�3
EMFPA/Puckett 1.17E�3
EMFPA-SIR 7.57E�4
Aulisa et al., markers/VOF 4.78E�4
Aulisa et al., markers/local area conservation 4.06E�5
Present (fixed uniform grids) 5.61E�4
Present (adaptive grids) 5.09E�4

All previous results were taken from Table 7 in [48], except that the result of Aulisa et al. (markers/local area conservation) was taken from
Table 1 in [52]. All previous results were obtained on a 128 · 128 rectangular grid. Results of the present paper were obtained on a fixed
uniform grid and an adaptive grid (both with hmin � 0.008), respectively.
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and the velocity field will be computed by the Stokes flow solver. More specifically, we consider drop defor-
mation in an extensional flow, which is modeled by experimentalists in four-roll mill devices, first introduced
by G.I. Taylor [53]. A schematic of the problem is shown in Fig. 11.

The control of drop deformation and breakup is of fundamental importance in numerous industrial appli-
cations such as the dispersion of immiscible fluids into each other to create emulsions, the separation of liquid
phases by tip streaming, and so on. It has attained wide investigation in the past and is still under intensive
research [53–56]. A milestone, since the pioneering work by Taylor [53], is the experimental work by Bentley



Fig. 11. Schematic of drop deformation in an extensional flow.
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and Leal [54]. They designed a computer-controlled four-roll mill apparatus, which enabled them automatic,
flexible and accurate control of the experiment with the capability to investigate drop deformation and
breakup in a wide range of flow conditions, in particular, the transient flow in between pure extensional flow
and pure shear flow, which had not been investigated experimentally up to then. Their work not only provided
the first experimental data for drop deformation and breakup in this transient flow, but also improved the data
for drop deformation in pure extensional flow and pure shear flow. The validity of small deformation theory
and slender drop theory was also clarified. For a review of the research prior to 1994, we refer readers to the
review paper by Stone [57].

We limit our simulation to two-dimensional low-speed Newtonian viscous flow with clean interfaces.
Two dimensionless parameters determine the behavior of such a flow: the capillary number Ca and the vis-
cosity ratio k, where Ca = lGa/r, l is the viscosity of the suspending fluid, G is the applied strain rate, a is
the radius of the undeformed drop, and k is the ratio of the drop to the suspending fluid viscosity. Accord-
ing to Bentley and Leal [54], the flow behavior can be qualitatively classified into three categories: low-vis-
cosity-ratio drops (k < 0.02), intermediate-viscosity-ratio drops (0.02 < k < 2.0), and high-viscosity-ratio
drops (k > 3.0). For a detailed description of the characteristics of each flow category, we refer readers
to Bentley and Leal [54]. For the purpose of code validation in the present paper, we choose a fixed viscos-
ity ratio k = 0.1, for which recent experimental data are available in Hu et al. [55]. Drop deformation under
different Ca are investigated and compared to the experiment. As is usual, drop deformation is defined for a
steady drop as Df = (L �W)/(L + W), where L and W are the half length and half width of the drop,
respectively. For the numerical computation, we take a (�10,10) · (�10,10) computational domain, the size
of which has been chosen to be large enough to avoid the effect of imposing the exact extensional flow on
the boundary. The mesh is refined near interfaces so that the solution is grid independent. A CFL number
of 0.7 is used for all computations.

Fig. 12 shows drop deformation as a function of capillary number for k = 0.1, where the final data point in
each set corresponds to the maximum value of Ca for which a steady drop shape is possible. The experimental
result is from Hu et al. [55]. It is shown that our numerical results agree with the experimental results very well
in a wide range of Ca, except near the critical point. As Ca is further increased, the drop symmetrically evolves
into a thin filament with rounded ends and concave sides. Fig. 13 shows the evolution of a drop for k = 0.1
and Ca = 0.23, which agrees qualitatively very well with the experimental drop shape described by Bentley and
Leal for the intermediate-viscosity-ratio drops [54] and the experimental result by Hu et al. [55]. Fig. 14 shows
the adaptive grids at t = 0 and t = 8.4. Observe that the grid is highly refined near the interface and tracks the
evolution of the interface throughout the domain.

We monitored the time averaged mass errors for all simulations. Table 8 shows the time averaged mass
errors obtained on different grids and using various interface thicknesses for a test case with k = 0.1 and
Ca = 0.1, an intermediate value in our study. The CFL number for this test is 0.3. The total integration
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time is one unit. We analyze how the mass error decreases as the grid is refined and as the interface thick-
ness is increased. Mass errors for test cases of other Ca numbers have similar behavior. From Table 8, we
see that:

(1) For the same grid, using a relatively large � (recall that � is the half width of the smoothed interface)
reduces the mass error significantly. This is because a larger interface thickness results in more smooth-
ing of the discontinuity in fluid properties across the interface and of the singular surface tension force.
 =8740

x

yFig. 14. Adaptive grids for drop deformation in an extensional flow (k = 0.1, Ca = 0.23, and hmin� 0.04).



Table 8
Time averaged mass errors for drop deformation in an extensional flow (Ca = 0.1)

hmin � 0.1 hmin � 0.05 hmin � 0.025

� = 2hmin 2.83E�3 1.43E�3 7.47E�4
� = 3hmin 6.55E�4 3.18E�4 2.46E�5
� = 4hmin 2.05E�4 6.03E�5 5.44E�6
� = 5hmin 1.84E�4 9.52E�5 1.66E�5

The numbers in the table are the mass errors. From left to right the minimum grid sizes are reduced. From top to bottom the interface
thickness increases.
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Smoothing reduces the numerical velocity divergence near the interface, which, as a consequence,
reduces the mass error. Also, we see that for the same grid the mass errors corresponding to � = 5hmin

are very close to or even larger than those corresponding to � = 4hmin, indicating that � = 4hmin is large
enough to smooth the discontinuities.

(2) For a constant �/hmin refining the grid reduces the mass error. Especially, when �/hmin is larger, say
� = 4hmin, refining the grid reduces the mass error more effectively. When �/hmin is small, say � = 2hmin,
the discontinuous fluid properties and the singular surface tension force are not well smoothed, which
makes the numerical velocity divergence near the interface relatively high, and thus refining the grid
is not as effective as when � = 4hmin.

(3) If we let the interface thickness, instead of the ratio �/hmin, be a constant, refining the grid reduces the
mass error substantially. For instance, in Table 8 the case with hmin � 0.1 and � = 2hmin has the same
interface thickness as the case with hmin � 0.05 and � = 4hmin. We see that the latter case has a much
lower mass error.

(4) The maximum mass error in Table 8 is 2.83E�3, which is only 0.09% of the mass of the drop. In practice,
the effect of this small amount of mass change on the overall fluid configuration is negligible.

We conclude that the mass errors in our simulation are small, and more importantly, with a moderate inter-
face thickness refining the grid can reduce the mass error substantially.

4. Conclusions and future work

We have developed an adaptive coupled level set/volume-of-fluid method for capturing an interface on
triangular unstructured grids. The method takes advantage of the strengths of both the level set and vol-
ume-of-fluid methods, which makes the calculation of the interface normal vector, and thus the surface
tension easier and more accurate. Mass is also conserved very accurately. The analytic interface recon-
struction algorithm we have developed has proven to be efficient, and conserve mass exactly. Numerical
validation showed that our ACLSVOF volume tracking method is second order accurate, and is compa-
rable to other state-of-the-art methods. The method is also coupled to a finite element based Stokes flow
solver. Physical simulations of drop deformation in an extensional flow showed that our method can cap-
ture the surface tension force accurately, and is capable of analyzing a physical problem. In addition,
owing to the adaptive algorithm, we resolve complex interface changes and interfaces of high curvature
accurately and efficiently.

In the future, we will couple our ACLSVOF volume tracking method to a Navier–Stokes solver to incor-
porate the effect of inertia. We will also extend the method to the axisymmetric and 3D cases. For the 3D case,
the Stokes and the Navier–Stokes flow solvers and the discontinuous Galerkin level set evolution have already
been developed [35,36]. Concerning the Lagrangian–Eulerian volume fraction advection, the 3D analytic
interface reconstruction and the 3D polyhedron clipping will present some challenges. Fortunately, a solution
for the 3D analytic interface reconstruction has been formulated [38], and the Sutherland–Hodgeman algo-
rithm was also targeted to 3D polyhedron clipping [42]. Finally, we will also incorporate the effects of surfac-
tants [58,59]. Surfactants play a crucial role in drop deformation and breakup, especially in producing very
tiny droplets by tipstreaming. Implementations of these ingredients are underway.
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Appendix A. Analytic interface reconstruction on triangular grids

Given the volume fraction f and the interface normal vector n in a triangular cell, we want to find the
unique linear segment whose normal vector is n and which truncates the cell with the given volume fraction.
Let A, B, and C be the three vertices of the cell. We draw a line with normal n through an arbitrary vertex of
the cell. For example, without loss of generality we can draw such a line through vertex A as shown in
Fig. A.1. Note that in all figures the triangles have been rotated so that the line segment appears horizontal.
The relationship between the line and the triangle can be divided into three categories: (i) the whole triangle is
on one side of the line (see Fig. A.1(a)), (ii) the triangle is divided by the line into two parts, one on each side,
(see Fig. A.1(b)), and (iii) the line coincides with one of the edges of the triangle (see Fig. A.1(c)). Mathemat-

ically, the applicable category can be determined from two inner products: pB ¼ AB
�! � n and pC ¼ AC

�! � n,
where the over-right arrows are used to denote a vector pointing from the first point to the second point.
If pB and pC are of the same sign, then B and C are on the same side of the line, and category (i) applies.
If they are of different signs, then category (ii) applies. If one of the inner products is zero, then category
(iii) applies. We assume that the triangle does not degenerate to a straight line, a requirement of grid gener-
ation, so pB and pC can not be zero at the same time. Notice that we have the option to transform category (ii)
to category (i) simply by exchanging the indices of the three vertices.

For category (i), without loss of generality, we assume that jpBj 6 jpCj (for jpBj > jpCj, we only need to
exchange the indices B and C in the results below), and define f* = VDABD/VDABC (see Fig. A.2). Note that
in all figures BD and EF are parallel to the given line segment. It is easy to show that
f � ¼ V DABD

V DABC
¼ pB

pC

. ðA:1Þ
If pB and pC are positive, then vertex A must be in fluid 1 (we assume that the normal vector points away from
fluid 1 and to fluid 2). This fluid configuration is shown in Fig. A.2(a) and (b), which correspond to f < f* and
f > f*, respectively. For f < f* (Fig. A.2(a)), we have that
jAE
�!j
jAB
�!j ¼

jAF
�!j
jAD
�!j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
V DAEF

V DABD

r
¼

ffiffiffiffiffi
f
f �

s
and AD

�! ¼ pB

pC

AC
�! ¼ f �AC

�!
.

Thus, the coordinates of the two end points, E and F, of the interface segment in the triangle DABC are
n
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Fig. A.1. Drawing a line segment through a vertex of a triangular cell: (a) pBpC > 0, (b) pBpC < 0 and (c) pBpC = 0.
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Fig. A.2. Fluid configuration for pBpC > 0: (a) f < f*, (b) f > f*, (c) f < 1 � f* and (d) f > 1 � f*.
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xE ¼ xA þ
ffiffiffiffiffi
f
f �

s
AB
�!

and xF ¼ xA þ
ffiffiffiffiffiffiffi
ff �

p
AC
�!

.

For f > f* (Fig. A.2(b)), we have that
jCE
�!j
jCB
�!j ¼

jCF
�!j
jCD
�!j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V DCEF

V DCBD

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f
1� f �

s
and CD

�! ¼ ð1� f �ÞCA
�!

.

Thus,
xE ¼ xC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f
1� f �

s
CB
�!

and xF ¼ xC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f Þð1� f �Þ

p
CA
�!

.

If pB and pC are negative, then vertex C must be in fluid 1. This configuration is shown in Fig. A.2(c) and (d),
which correspond to f < 1 � f* and f > 1 � f*, respectively. Similarly, we can derive that for f < 1 � f*
xE ¼ xC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

f
1� f �

s
CB
�!

and xF ¼ xC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1� f �Þ

p
CA
�!
and for f > 1 � f*
xE ¼ xA þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

f �

s
AB
�!

and xF ¼ xA þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f Þf �

p
AC
�!

.

For category (ii), pBpC < 0, we assume pB < 0 and pC > 0 without loss of generality, and define f* = VDABD/
VDABC = pB/(pB � pC) (see Fig. A.3). Under this assumption, vertex B must be in fluid 1, as shown in
Fig. A.3(a) and (b), which correspond to f < f* and f > f*, respectively. We can show that for f < f*
xE ¼ xB þ
ffiffiffiffiffi
f
f �

s
BA
�!

and xF ¼ xB þ
ffiffiffiffiffiffiffi
ff �

p
BC
�!
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Fig. A.3. Fluid configuration for pB < 0 and pC > 0: (a) f 6 f* and (b) f > f*.
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and for f > f*
xE ¼ xC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f
1� f �

s
CA
�!

and xF ¼ xC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f Þð1� f �Þ

p
CB
�!

.

For category (iii), we assume pB 6¼ 0 and pC = 0 without loss of generality. The fluid configuration is shown
in Fig. A.4(a) and (b), which correspond to pB < 0 and pB > 0, respectively. We can show that for pB < 0
xE ¼ xB þ
ffiffiffi
f

p
BA
�!

and xF ¼ xB þ
ffiffiffi
f

p
BC
�!
and for pB > 0
xE ¼ xB þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p
BA
�!

and xF ¼ xB þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p
BC
�!

.

The resulting piecewise linear interface conserves the volume of fluid exactly. The method is analytical, effi-
cient, and extendible to 3D. For each reconstruction, the method only requires several basic algebraic oper-
ations, one square root, and several if-else operations, compared to a number of operations that is unknown a
priori in iterative methods. Further details and a 3D algorithm are formulated in [38].

Appendix B. Sutherland–Hodgeman polygon clipping

In this appendix, we describe briefly the Sutherland–Hodgeman polygon clipping algorithm [42] used in
Section 2.2.3. The basic idea of this algorithm is to ‘‘trim’’ the subject polygon, which is to be clipped against
the clip polygon, by each extended edge of the clip polygon. In our case, the subject polygon is a Lagrangian
fluid region that is occupied by fluid 1, and the clip polygon is a triangular Eulerian grid cell. The clip polygon
must be convex for this algorithm, which is satisfied in our case because all the grid cells are convex. As an
example, Fig. B.1 illustrates the clipping of a four-sided polygonal fluid element p1p2p3p4 against a triangular
grid cell q1q2q3, where p1p2p3p4 is trimmed by the three extended edges of q1q2q3 in order, as shown in Figs.
B.1(b), (c), and (d), respectively.
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Fig. A.4. Fluid configuration for pB 6¼ 0 and pC = 0: (a) pB < 0 and (b) pB > 0.
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Fig. B.1. Clipping of a four-sided polygonal fluid element against a triangular grid cell. (a) The polygons before clipping. (b) Clipping of
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clipping.
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To illustrate the ‘‘trimming’’ process, let us consider the clipping of p1p2p3p4 against the first edge q1q2 for
example, which will result in a clipped polygon r1r2p3p4 (see Fig. B.1(b)). For convenience, we name the infi-
nitely-long line, obtained by extending edge q1q2, L, and define that a vertex pj is on the ‘‘right’’ side of L if pj

is on the same side of L as the other vertex q3 is, and is on the ‘‘left’’ side otherwise. Then, the trimming pro-
cess can be described as in Algorithm 1.

Algorithm 1. Trimming a polygon by a line.

for each vertex pair pj, pj+1 of the subject polygon

if both pj and pj+1 are on the right side of L then

Add pj+1 to the list of the vertices of the clipped polygon.
else if pj is on the right and pj+1is on the left then

Add the intersection of the line segment pjpj+1 and L to the list of the vertices of the clipped polygon.
else if pj is on the left and pj+1is on the right then

Add both the intersection and vertex pj+1 to the list of the vertices of the clipped polygon.
else

Do nothing.
end if

end for

The list of the vertices produced from the trimming process defines the clipped polygon, that is r1r2p3p4 for this
example. In general, the trimming process is reentered to clip the previously clipped polygon against the sub-
sequent edges of the grid cell, and the overall clipping completes as soon as the polygon has been trimmed by
all the edges of the grid cell.
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